105 research outputs found

    RF to Millimeter-wave Linear Power Amplifiers in Nanoscale CMOS SOI Technology

    Get PDF
    The low manufacturing cost, integration capability with baseband and digital circuits, and high operating frequency of nanoscale CMOS technologies have propelled their applications into RF and microwave systems. Implementing fully-integrated RF to millimeter-wave (mm-wave) CMOS power amplifiers (PAs), nevertheless, remains challenging due to the low breakdown voltages of CMOS transistors and the loss from on-chip matching networks. These limitations have reduced the design space of CMOS power amplifiers to narrow-band, low linearity metrics often with insufficient gain, output power, and efficiency. A new topology for implementing power amplifiers based on stacking of CMOS SOI transistors is proposed. The input RF power is coupled to the transistors using on-chip transformers, while the gate terminal of teach transistor is dynamically biased from the output node. The output voltages of the stacked transistors are added constructively to increase the total output voltage swing and output power. Moreover, the stack configuration increases the optimum load impedance of the PA to values close to 50 ohm, leading to power, efficiency and bandwidth enhancements. Practical design issues such as limitation in the number of stacked transistors, gate oxide breakdown, stability, effect of parasitic capacitances on the performance of the PA and large chip areas have also been addressed. Fully-integrated RF to mm-wave frequency CMOS SOI PAs are successfully implemented and measured using the proposed topology

    A hybrid Si@FeSiy/SiOx anode structure for high performance lithium-ion batteries via ammonia-assisted one-pot synthesis

    Get PDF
    Synthesised via planetary ball-milling of Si and Fe powders in an ammonia (NH3) environment, a hybrid Si@FeSiy/SiOx structure shows exceptional electrochemical properties for lithium-ion battery anodes, exhibiting a high initial capacity of 1150 mA h g−1 and a retention capacity of 880 mA h g−1 after 150 cycles at 100 mA g−1; and a capacity of 560 mA h g−1 at 4000 mA g−1. These are considerably high for carbon-free micro-/submicro-Si-based anodes. NH3 gradually turns into N2 and H2 during the synthesis, which facilitates the formation of highly conductive FeSiy (y = 1, 2) phases, whereas such phases were not formed in an Ar atmosphere. Milling for 20–40 h leads to partial decomposition of NH3 in the atmosphere, and a hybrid structure of a Si core of mixed nanocrystalline and amorphous Si domains, shelled by a relatively thick SiOx layer with embedded FeSi nanocrystallites. Milling for 60–100 h results in full decomposition of NH3 and a hybrid structure of a much-refined Si-rich core surrounded by a mantle of a relatively low level of SiOx and a higher level of FeSi2. The formation mechanisms of the SiOx and FeSiy phases are explored. The latter structure offers an optimum combination of the high capacity of a nanostructural Si core, relatively high electric conductivity of the FeSiy phase and high structural stability of a SiOx shell accommodating the volume change for high performance electrodes. The synthesis method is new and indispensable for the large-scale production of high-performance Si-based anode materials

    Morphological and Molecular Defects in Human Three-Dimensional Retinal Organoid Model of X-Linked Juvenile Retinoschisis

    Get PDF
    X-linked juvenile retinoschisis (XLRS), linked to mutations in the RS1 gene, is a degenerative retinopathy with a retinal splitting phenotype. We generated human induced pluripotent stem cells (hiPSCs) from patients to study XLRS in a 3D retinal organoid in vitro differentiation system. This model recapitulates key features of XLRS including retinal splitting, defective retinoschisin production, outer-segment defects, abnormal paxillin turnover, and impaired ER-Golgi transportation. RS1 mutation also affects the development of photoreceptor sensory cilia and results in altered expression of other retinopathy-associated genes. CRISPR/Cas9 correction of the disease-associated C625T mutation normalizes the splitting phenotype, outer-segment defects, paxillin dynamics, ciliary marker expression, and transcriptome profiles. Likewise, mutating RS1 in control hiPSCs produces the disease-associated phenotypes. Finally, we show that the C625T mutation can be repaired precisely and efficiently using a base-editing approach. Taken together, our data establish 3D organoids as a valid disease model

    Effect of Granulocyte-Macrophage Colony-Stimulating Factor on Oral Mucositis in Head and Neck Cancer Patients After Cisplatin, Fluorouracil, and Leucovorin Chemotherapy

    Get PDF
    These beneficial effects continued into the second cycle of PFL chemotherapy after crossover to no GM-CSF. The incidence of severe mucositis was reduced when GM-CSF was given in the second cycle of PFL. Analysis of variance indicated significant direct GM-CSF treatment effects on the mean AUC of gross/functional scores and duration of moderate gross mucositis (grade -2) over both periods. There was a significant period effect in favor of giving GM-CSF in the first cycle of chemotherapy. Conclusion: GM-CSF can significantly reduce the severity and duration of chemotherapy-induced oral mucositis after PFL chemotherapy

    Menopausal hormone therapy and women's health:An umbrella review

    Get PDF
    Background: There remains uncertainty about the impact of menopausal hormone therapy (MHT) on women’s health. A systematic, comprehensive assessment of the effects on multiple outcomes is lacking. We conducted an umbrella review to comprehensively summarize evidence on the benefits and harms of MHT across diverse health outcomes. Methods and findings: We searched MEDLINE, EMBASE, and 10 other databases from inception to November 26, 2017, updated on December 17, 2020, to identify systematic reviews or meta-analyses of randomized controlled trials (RCTs) and observational studies investigating effects of MHT, including estrogen-alone therapy (ET) and estrogen plus progestin therapy (EPT), in perimenopausal or postmenopausal women in all countries and settings. All health outcomes in previous systematic reviews were included, including menopausal symptoms, surrogate endpoints, biomarkers, various morbidity outcomes, and mortality. Two investigators independently extracted data and assessed methodological quality of systematic reviews using the updated 16-item AMSTAR 2 instrument. Random-effects robust variance estimation was used to combine effect estimates, and 95% prediction intervals (PIs) were calculated whenever possible. We used the term MHT to encompass ET and EPT, and results are presented for MHT for each outcome, unless otherwise indicated. Sixty systematic reviews were included, involving 102 meta-analyses of RCTs and 38 of observational studies, with 102 unique outcomes. The overall quality of included systematic reviews was moderate to poor. In meta-analyses of RCTs, MHT was beneficial for vasomotor symptoms (frequency: 9 trials, 1,104 women, risk ratio [RR] 0.43, 95% CI 0.33 to 0.57, p [less than] 0.001; severity: 7 trials, 503 women, RR 0.29, 95% CI 0.17 to 0.50, p = 0.002) and all fracture (30 trials, 43,188 women, RR 0.72, 95% CI 0.62 to 0.84, p = 0.002, 95% PI 0.58 to 0.87), as well as vaginal atrophy (intravaginal ET), sexual function, vertebral and nonvertebral fracture, diabetes mellitus, cardiovascular mortality (ET), and colorectal cancer (EPT), but harmful for stroke (17 trials, 37,272 women, RR 1.17, 95% CI 1.05 to 1.29, p = 0.027) and venous thromboembolism (23 trials, 42,292 women, RR 1.60, 95% CI 0.99 to 2.58, p = 0.052, 95% PI 1.03 to 2.99), as well as cardiovascular disease incidence and recurrence, cerebrovascular disease, nonfatal stroke, deep vein thrombosis, gallbladder disease requiring surgery, and lung cancer mortality (EPT). In meta-analyses of observational studies, MHT was associated with decreased risks of cataract, glioma, and esophageal, gastric, and colorectal cancer, but increased risks of pulmonary embolism, cholelithiasis, asthma, meningioma, and thyroid, breast, and ovarian cancer. ET and EPT had opposite effects for endometrial cancer, endometrial hyperplasia, and Alzheimer disease. The major limitations include the inability to address the varying effects of MHT by type, dose, formulation, duration of use, route of administration, and age of initiation and to take into account the quality of individual studies included in the systematic reviews. The study protocol is publicly available on PROSPERO (CRD42017083412). Conclusions: MHT has a complex balance of benefits and harms on multiple health outcomes. Some effects differ qualitatively between ET and EPT. The quality of available evidence is only moderate to poor

    The genome sequence of the orchid Phalaenopsis equestris

    Get PDF
    Orchidaceae, renowned for its spectacular flowers and other reproductive and ecological adaptations, is one of the most diverse plant families. Here we present the genome sequence of the tropical epiphytic orchid Phalaenopsis equestris, a frequently used parent species for orchid breeding. P. equestris is the first plant with crassulacean acid metabolism (CAM) for which the genome has been sequenced. Our assembled genome contains 29,431 predicted protein-coding genes. We find that contigs likely to be underassembled, owing to heterozygosity, are enriched for genes that might be involved in self-incompatibility pathways. We find evidence for an orchid-specific paleopolyploidy event that preceded the radiation of most orchid clades, and our results suggest that gene duplication might have contributed to the evolution of CAM photosynthesis in P. equestris. Finally, we find expanded and diversified families of MADS-box C/D-class, B-class AP3 and AGL6-class genes, which might contribute to the highly specialized morphology of orchid flowers. (Résumé d'auteur

    Facilitating Joint Chaos and Fractal Analysis of Biosignals through Nonlinear Adaptive Filtering

    Get PDF
    Background: Chaos and random fractal theories are among the most important for fully characterizing nonlinear dynamics of complicated multiscale biosignals. Chaos analysis requires that signals be relatively noise-free and stationary, while fractal analysis demands signals to be non-rhythmic and scale-free. Methodology/Principal Findings: To facilitate joint chaos and fractal analysis of biosignals, we present an adaptive algorithm, which: (1) can readily remove nonstationarities from the signal, (2) can more effectively reduce noise in the signals than linear filters, wavelet denoising, and chaos-based noise reduction techniques; (3) can readily decompose a multiscale biosignal into a series of intrinsically bandlimited functions; and (4) offers a new formulation of fractal and multifractal analysis that is better than existing methods when a biosignal contains a strong oscillatory component. Conclusions: The presented approach is a valuable, versatile tool for the analysis of various types of biological signals. Its effectiveness is demonstrated by offering new important insights into brainwave dynamics and the very high accuracy in automatically detecting epileptic seizures from EEG signals

    Вихретоковый анизотропный термоэлектрический первичный преобразователь лучистого потока

    Get PDF
    Представлена оригинальная конструкция первичного преобразователя лучистого потока, который может служить основой для создания приемника неселективного излучения с повышенной чувствительностью
    corecore